

The ICARUS Project

CERN

China IHEP

Italy

Aquila, LNGS, Milano, Padova, Pavia, Pisa, Torino

Switzerland ETH/Zurich

Poland

Katowice, Krakow, Warszawa, Wrocław

USA UCLA

André Rubbia ETH Zürich

Les Houches, June 2001

The ICARUS Collaboration

F. Arneodo, E. Bernardini, O. Palamara Laboratori Nazionali di Gran Sasso, INFN, s.s. 17bis, km 18+910, Assergi (AQ), Italy

B. Babussinov, S. Centro, G. Meng, D. Pascoli, S. Ventura Dipartimento di Fisica e INFN, Università di Padova, via Marzolo 8, Padova, Italy

A. Badertscher, A. Bueno, M. Campanelli, C. Carpanese, I. Gil-Botella, M. Laffranchi, J. Rico, A. Rubbia, N. Sinanis Institute for Particle Physics, ETH Hönggerberg, Zürich, Switzerland

> G. Battistoni, D. Cavalli, P. Sala, T. Rancati Dipartimento di Fisica e INFN, Università di Milano, via Celoria 16, Milano, Italy

P. Benetti, R. Brunetti, E. Calligarich, R. Dolfini, A. Gigli Berzolari, F. Mauri, L. Mazzone, C. Montanari, A. Piazzoli, A. Rappoldi, G.L. Raselli, M. Rossella, C. Rubbia¹, D. Scannicchio, P. Torre, C. Vignoli, Z. Xu Dipartimento di Fisica e INFN, Università di Pavia, via Bassi 6, Pavia, Italy

A. Borio di Tigliole, A. Cesana, M. Terrani Politecnico di Milano (CESNF), Università di Milano, via Ponzio 34/3, Milano, Italy

F. Cavanna, D. Mazza, G. Nurzia, S. Petrera, G. Piano Mortari, C. Rossi Dipartimento d Fisica e INFN, Università dell'Aquila, via Vetoio, L'Aquila, Italy

P. Cennini, A. Ferrari² F. Pietropaolo³, CERN, CH 1211 Geneva 23, Switzerland

C. Chen, Y. Chen, K. He, X. Huang, Z. Li, F. Lu, J. Ma, G. Xu, C. Zhang, Q. Zhang, S. Zhen IHEP – Academia Sinica, 19 Yuqnan Road, Beijing, People's Republic of China

D. Cline, C. Matthey, S. Otwinowski, H. Wang, J. Woo Department of Physics, UCLA, Los Angeles, CA 90024, USA

P. Picchi⁴
University of Torino, Torino, Italy

F. Sergiampietri INFN Pisa, via Livornese 1291, San Piero a Grado (PI), Italy

J.Holeczek, B.Jokisz, J.Kisiel, W.Zipper Institute of Physics, University of Silesia, Katowice, Poland

M.Markiewicz

Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, Kraków, Poland

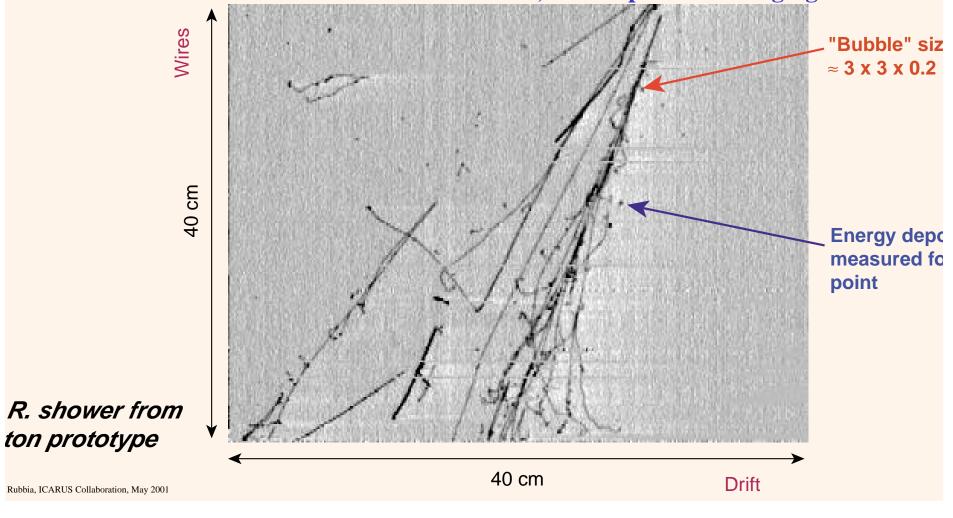
A.Dabrowska, J.Halik, M.Stodulski, A.Zalewska H.Niewodniczański Institute of Nuclear Physics, Kraków, Poland

M.Wójcik
Institute of Physics, Jagellonian University, Kraków, Poland

T.Kozłowski, M.Moszyński, E.Rondio, J.Stepaniak, M.Szeptycka, M.Szleper

1.Kozłowski, M.Moszyński, E.Kondio, J.Stepaniak, M.Szeptycka, M.Szleper A.Sołtan Institute for Nuclear Studies, Warszawa, Poland

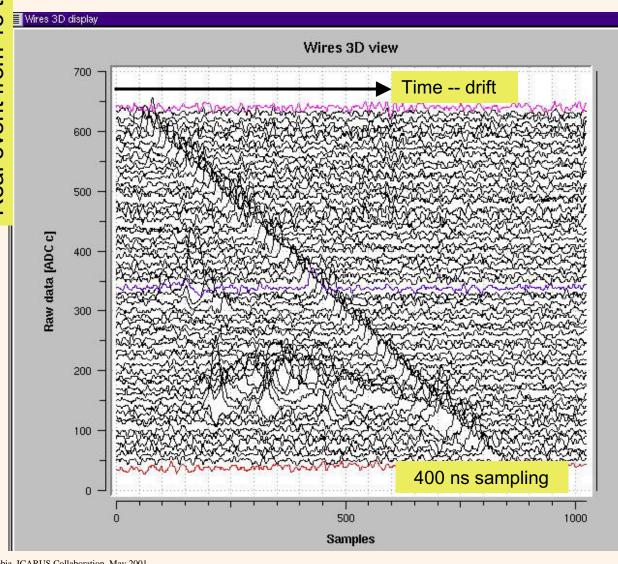
B.Badełek, D.Kiełczewska, J.Łagoda Institute of Experimental Physics, Warsaw University, Warszawa, Poland

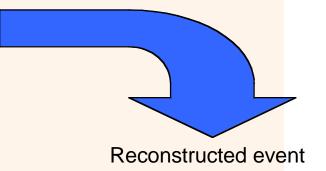

D.Grech, C.Juszczak, J.Pasternak, J.Sobczyk
Institute of Physics, Wrocław University, Wrocław, Poland

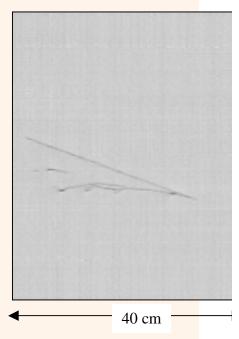
The ICARUS technology

- Traditional bubble-chambers have played a fundamental role in particle physics because they provide non-biased images, in three dimensions and with high resolution.
- ICARUS represents a new generation of bubble-chambers.
- It is based on the novel particle detection technology of liquid argon imaging.
- It offers the advantage over traditional bubble-chambers of being operated over a very large sensitive volume, continuously sensitive, self-triggering, and able to provide 3D views with particle ID from dE/dx and range measurements. At the same time excellent calorimetry with very fine granularity and high accuracy is provided for contained events.

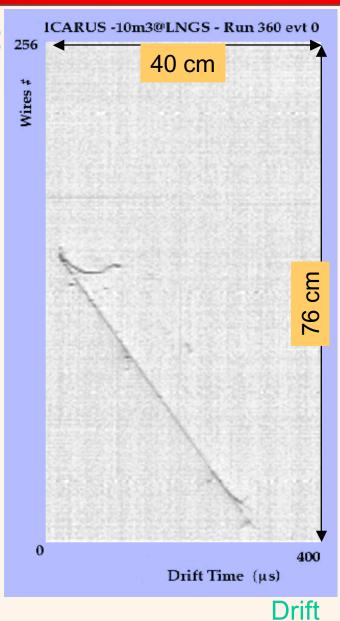
ICARUS liquid argon imaging

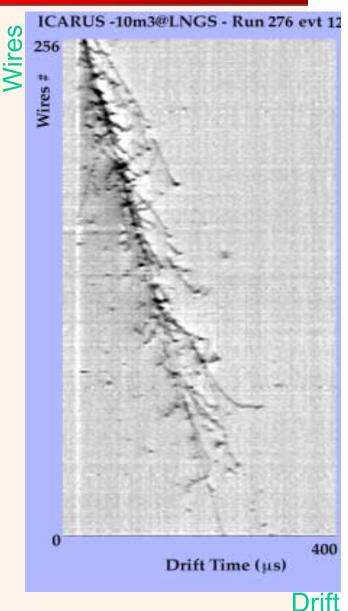

The ICARUS technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imaging.




Principle of readout

Raw Data


Liquid Argon imaging on large scales


10m³ Module at LNGS

Cosmic Ray tracks recorded during the 10 m³ operation

"Big track" in T600 semimodule expected soon...

The first ICARUS T600 prototype

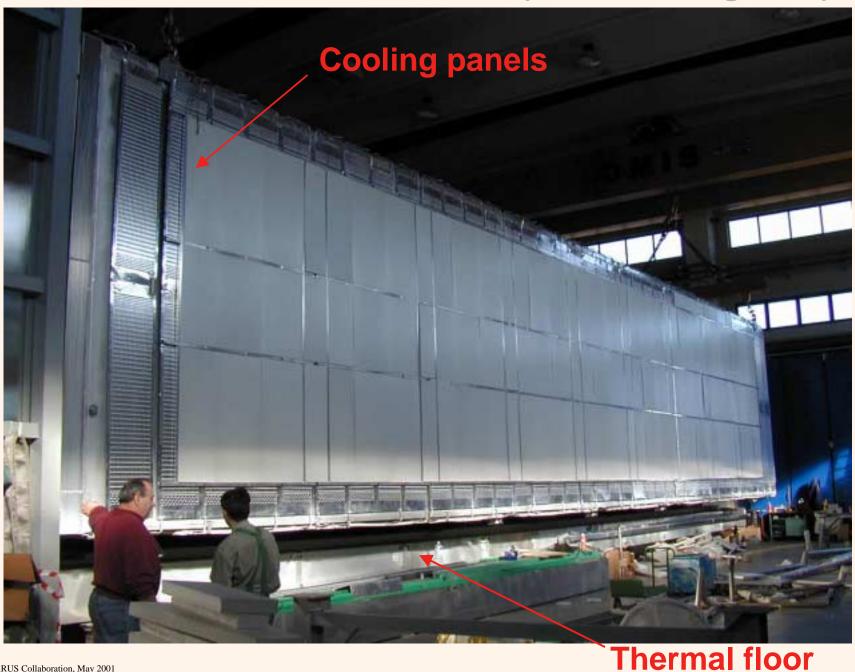
- The T600 module is to be considered as a <u>fundamental</u> <u>milestone</u> on the road towards a total sensitive mass in the multi-kton range
 - First piece of the detector to be complemented by further modules of appropriate size and dimension ⇒ Goal is to reach a multikton mass in LNGS tunnel in a most efficient and rapid way

T600 module

• It has a <u>physics program</u> of its own, immediately relevant to neutrino physics, though limited by statistics (see hep-ex/0103008)

ICARUS

T600 recent progress


ec 1998 - Jun 1999 Operation of 10 m³ in Pavia: LAr purification and recirculation tests, cryogenic test of internal detector mechanics, general cryogenics plants performance evaluation. **ep 1999** Completed the site preparation in Pavia for the T600 cryostat. lou 1999 Completion of the "clean room" and of the "assembly island". eb 2000 Operation of the 10 m³ at LNGS: data taking with a fully functional imaging (up to 4 m tracks), final electronics, cryogenics and purification eb 2000 - Apr 2000 Successful, 100days test run with cosmic ray trigger at GranSasso. eb 29, 2000 Acceptance tests and delivery in Pavia of the cryostat by AirLiquide of the first half-module Nar 2000 Beginning of assembly of the internal detector mechanics. ul 2000 Completion of assembly and positioning of mechanical frames for the first half-module; Begin wiring. lug 4, 2000 Acceptance tests and delivery in Pavia of the cryostat by AirLiquide of the second half-module eb 7, 2001 Assembly of first semi-module completed (lasted 11 months) eb 17, 2001 Semi-module sealed! eb 21, 2001 Started leak tests (dewar in overpressure) pr 13, 2001 Started vacuum pumping of dewar Nau 1. 2001 **Started cooling**

Rubbia, ICARUS Collaboration, May 2001

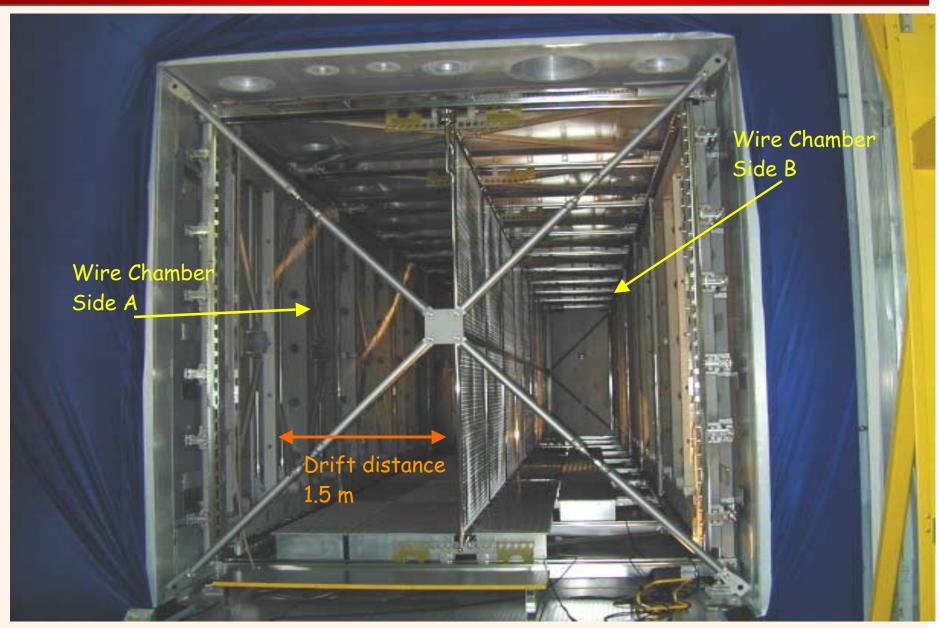
First half-module delivery in Pavia (Feb 29, 2000)

Second half-module in Pavia (delivered Aug 2000)

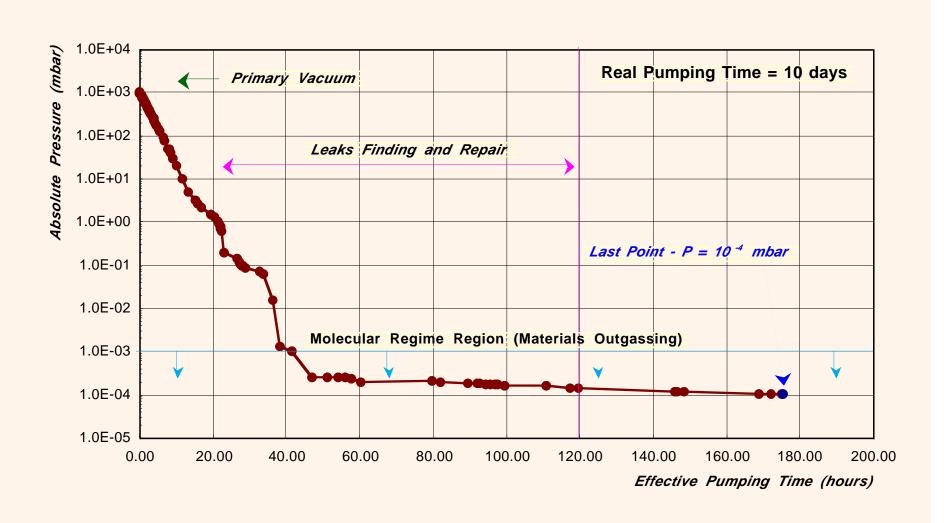
Rubbia, ICARUS Collaboration, May 2001

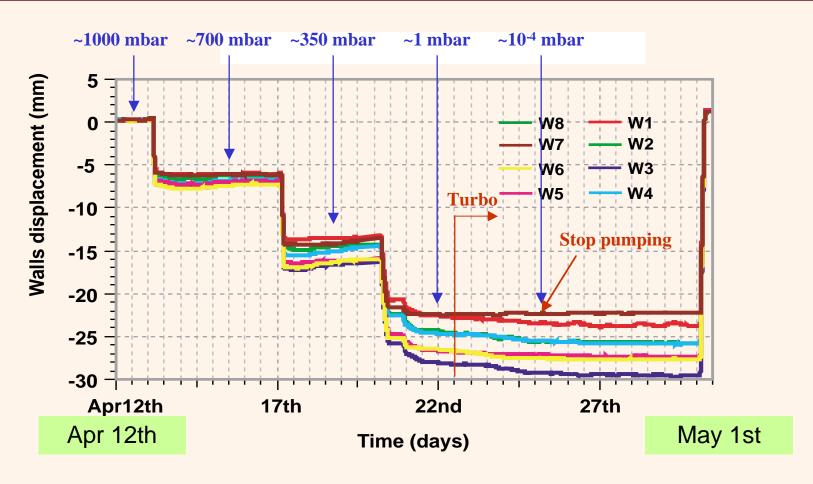
YYII C IIIStanatiun in Luuu

internal detector (Jul-Oct 2000)

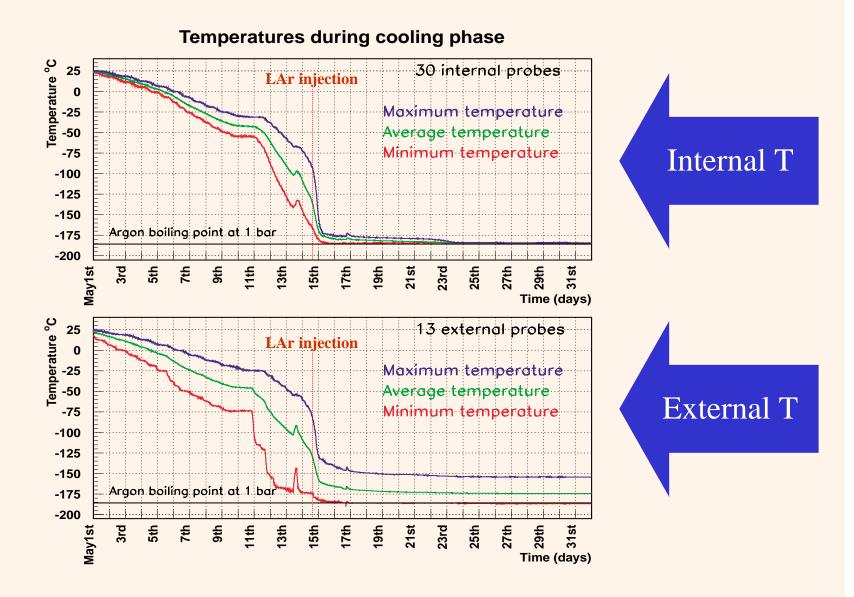


Rubbia, ICARUS Collaboration, May 2001


The three wire planes at $0^{\circ},\pm60^{\circ}$ (wire pitch = 3mm)

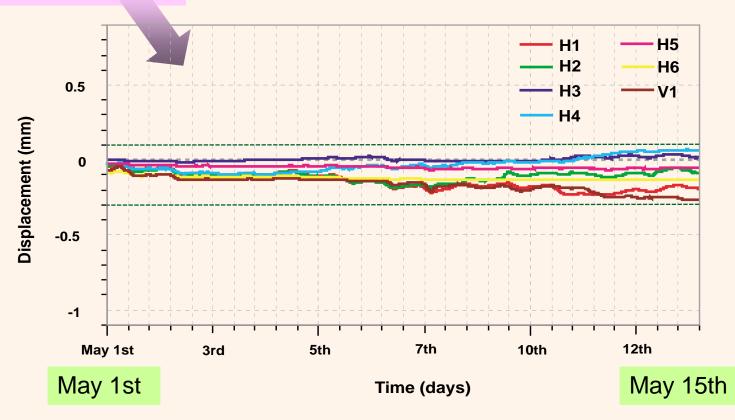

Internal Detector view

Evacuation Curve

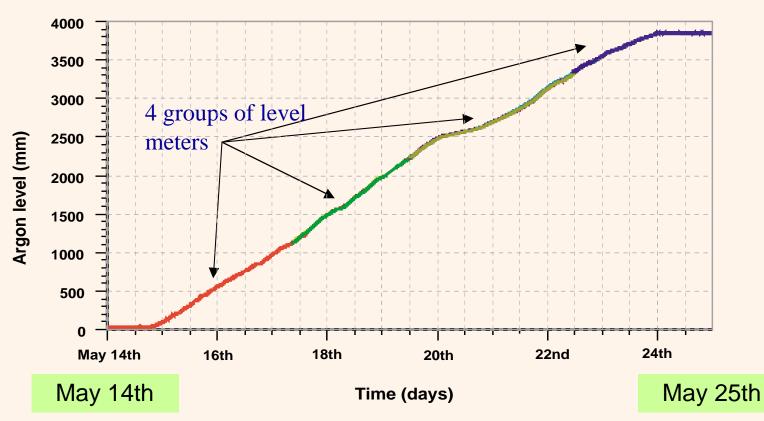

Walls displacement during vacuum phase

Total spent time: 12 days

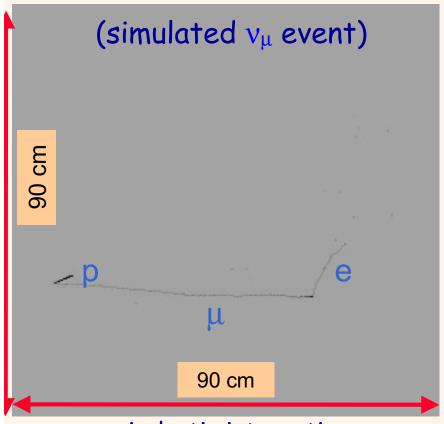
Effective time: 47 hours


Temperature during cooling phase

Wire displacement during the cooling phase


Wires move less than 300µm

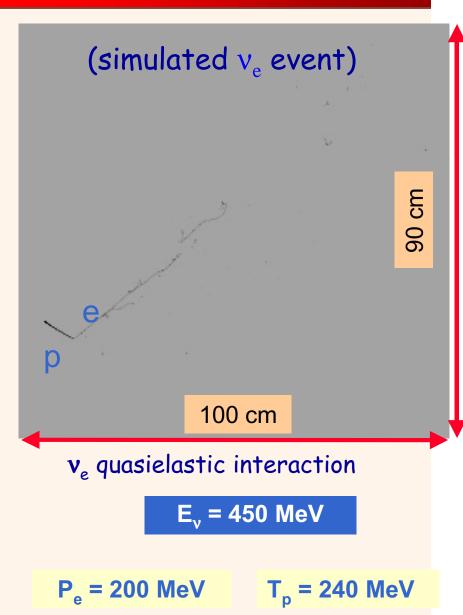
Wires shrinking during cooling phase


Filling phase

Liquid Argon Level during filling phase

10 days were needed to fill up the detector with LAr

Atmospheric v events



 $\boldsymbol{v}_{\!_{\boldsymbol{\mu}}}$ quasi-elastic interaction

 $E_{v} = 370 \text{ MeV}$

$$P_{\mu} = 250 \text{ MeV}$$

$$T_p = 90 \text{ MeV}$$

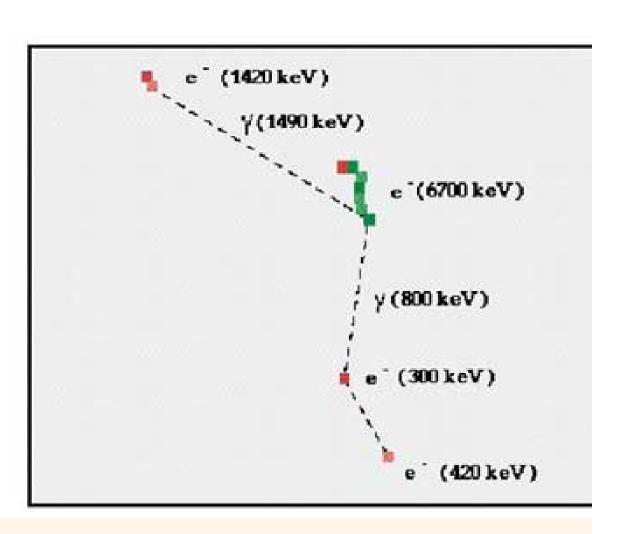
Solar neutrino detection

Real-time detection of neutrinos through two independent reactions

Elastic scattering on atomic electron

v absorption on Argon nuclei

$$V_x + e^- \rightarrow V_x + e^-$$


$$V_x + e^- \to V_x + e^- \to V_x + e^- \to V_e + e^{40}Ar \to e^{40}K^* + e^-$$

- **Signature:** primary electron track
- CC/NC separation: (secondary ionization from ⁴⁰K* de-excitation)
 - "Smoking gun"
- **Detection threshold: 5 MeV**
- Sensitive to ⁸B and *hep* components of the solar neutrino **spectrum**

Typical Montecarlo Gamow -Teller digitised event

Solar neutrino expected rates

Off-line event selection done in terms of energy of the main electron plus

a) Elastic: Angle between electron and solar direction

b) Absorption: correlation between multiplicity

and energy of the associated tracks

Expected events per year for a 600 ton detector

	Te (MeV)	Neutrons			
	0.0	7400			
•	1.0	3404			
	2.0	1554			
	3.0	696			
	4.0	318			
	5.0	144			
	6.0	66			
	7.0	30			
	8.0	13			
Rubbia, ICARUS Collaboration, May 2001					

all cuts imposed

Expected events/year (for a 600 ton detector in case of no oscillations)		
Elastic channel Background	212 6	
Absorption channels Background	759 26	

Nucl Instr. And Methods A455 (2000) 376

Current status

• Total run duration in Pavia ≈ 3 months (100 days)

```
√ Day 1 to 10 Vacuum (including leak detection)

√ Day 11 to 15
                 Pre-cooling
√ Day 16 to 20
                 Cooling
√ Day 21 to 30
                 Filling
√ Day 31 to 45
                 Liquid recirculation

√ Day 46 to 55

                 Complete detector start-up
√ Day 56 to 65
                 Data taking with horizontal tracks
                 ⇒ "Big track"
√ Day 66 to 70
                 Data taking with vertical tracks
√ Day 71 to 75
                 Data taking with internal trigger only
Day 76 to 90
                 Data taking with DEDALUS triggers
Day 91 to 93
                 Data taking with liquid recirculation on

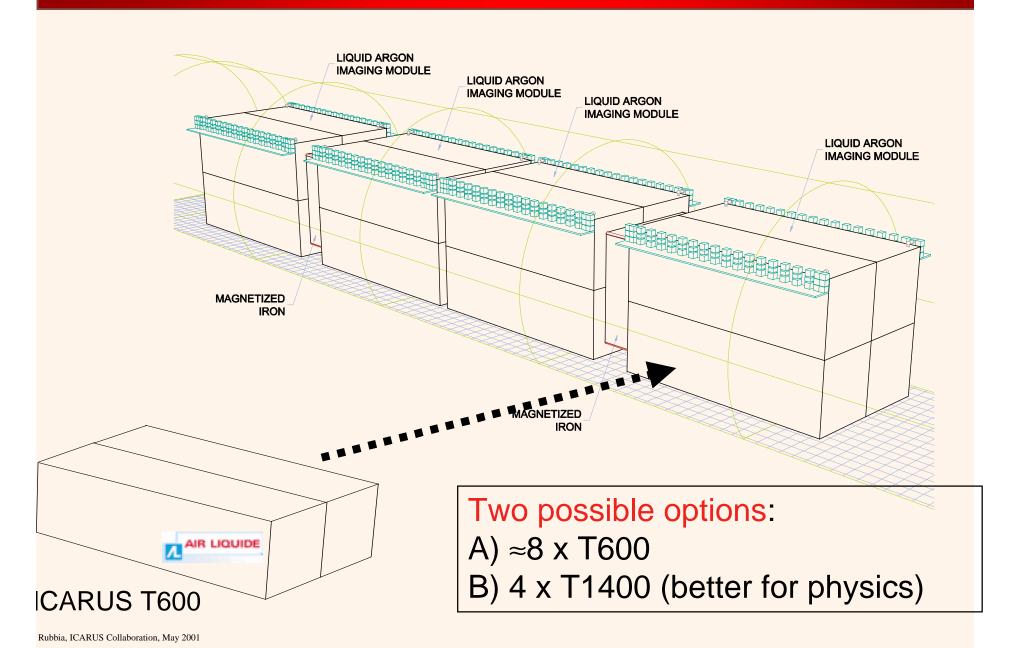
    Day 94 to 100 Data taking with 1 kV / cm drift field
```

The rationale: "cloning"

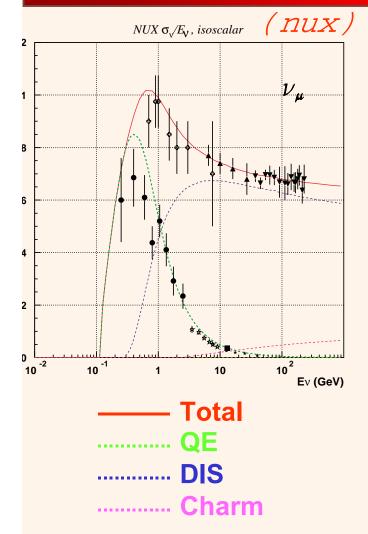
- The T600 module is to be considered as a <u>fundamental</u> <u>milestone</u> on the road towards a total sensitive mass in the multi-kton range
 - First milestone of a step-wise strategy that allow us to develop progressively the necessary know-how to build larger detectors
 - Living proof that liquid Argon technology can be implemented on large scales
- We are now ready to propose the construction of a second T600 "clone" to complete the first 35 meters of the experimental hall at LNGS, with about 1 kton of active liquid argon mass.
- The T600 module is hence the first piece of the final detector, to be complemented by further modules of appropriate size and dimension ⇒ The goal is to reach in a most efficient and rapid way a liquid Argon fiducial mass in the multi-kton range

A phased experimental program

At least two different phases:


• **First phase**: atmospheric neutrinos, solar, nucleon decay.

Exposure $\approx 1-2 \text{ kton*year (hep-ex/0103008)}$


• Second phase: same + search for τ appearance and $v_u \rightarrow v_e$ oscillations with CERN-Gran Sasso beam.

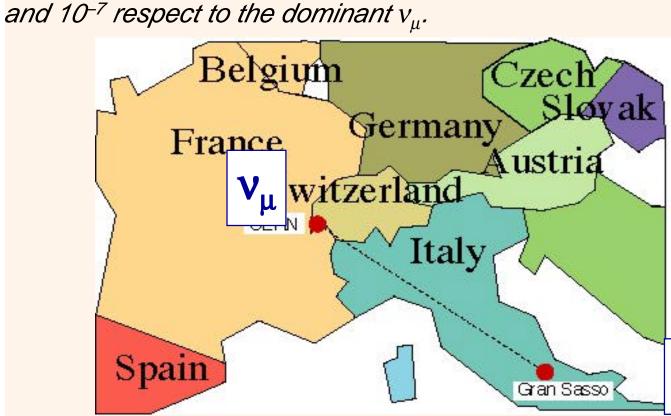
Exposure ≈ 20 kton*year
(LNGS-P21/99 CERN/SPSC 99-25 SPSC/P314 & addendum 1,2)

ICARUS 5kton

Atmospheric neutrino rates (5 kt x year)

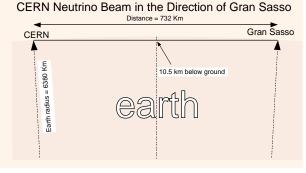
Nuclear effects	
fully embedded in	n <i>FLUKA</i>
nuclear model	

		$\Delta m_{23}^2 \; ({ m eV^2})$			
	No osci	5×10^{-4}	1×10^{-3}	3.5×10^{-3}	r)
Muon-like	675 ± 26	515 ± 23	495 ± 22	470 ± 22	4
Contained	418 ± 20	319 ± 18	307 ± 18	291 ± 17	2
Partially-Contained	257 ± 16	196 ± 14	188 ± 14	179 ± 13	1
3.7		400 1 44		450 1 40	
No proton	260 ± 16	190 ± 14	185 ± 14	170 ± 13	1
One proton	205 ± 14	160 ± 13	150 ± 12	145 ± 12	1
Multi-prong	210 ± 14	165 ± 13	160 ± 13	155 ± 12	1
$P_{lepton} < 400 \text{ MeV}$	285 ± 17	205 ± 14	200 ± 14	185 ± 14	1
$P_{lepton} \ge 400 \text{ MeV}$	390 ± 20	310 ± 18	295 ± 17	285 ± 17	2
					
Electron-like	380 ± 19	380 ± 19	380 ± 19	380 ± 19	3
3.7	100 10	100 10	100 10	100 10	_
No proton	160 ± 13	160 ± 13	160 ± 13	160 ± 13	1
One proton	120 ± 11	120 ± 11	120 ± 11	120 ± 11	1
Multi-prong	100 ± 10	100 ± 10	100 ± 10	100 ± 10	1
$P_{lepton} < 400 \text{ MeV}$	185 ± 14	185 ± 14	185 ± 14	185 ± 14	1
$P_{lepton} \ge 400 \text{ MeV}$	195 ± 14	195 ± 14	195 ± 14	195 ± 14	1
3.7.00					
NC	480 ± 22	480 ± 22	480 ± 22	480 ± 22	4
	4 F 0 F 1 6 5				
TOTAL	1535 ± 39				


Events/year

CNGS neutrino beam

The expected v_e and v_τ contamination of the CNGS beam are of the order of 10⁻²


CERN 98-02 - INFN-AE/98-05

CERN-SL/99-034(DI) - INFN/AE-99/05

 v_{τ} ? v_{e} ?

Planned beam commissioning: May 2005

CNGS events in 5 kton, 4 years running

20 kton×year (4 years running)

		$oldsymbol{arepsilon}$	(0	0)
$\theta_{23} = 45^{\circ}, \theta_{13} = 7^{\circ}$			$\Delta m_{23}^2 \; ({\rm eV}^2)$	
$\mathbf{o}_{23} - \mathbf{a}_{23}$, $\mathbf{o}_{13} - \mathbf{o}_{23}$	No osci	1×10^{-3}	3.5×10^{-3}	5×10^{-3}
$\nu_{\mu} \text{ CC}$	54300	53820	49330	44910
$\bar{\nu_{\mu}}$ CC	1090	1088	1070	1057
ν_e CC	437	437	437	436
$\bar{\nu_e}$ CC	29	29	29	29
ν NC	17550			
$\bar{\nu} \mathrm{NC}$	410			
$\nu_{\mu} \rightarrow \nu_{e} \text{ CC}$	-	7	74	143
$\nu_{\mu} \rightarrow \nu_{\tau} \text{ CC}$	-	52	620	1250
$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}} \ \mathrm{CC}$	_	< 1	< 1	1
$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{\tau}} \text{ CC}$	-	< 1	6	13

Rubbia, ICARUS Collaboration, May 2001

Search for $\theta_{13}\neq 0$

 $\Delta m_{32}^2 = 3.5 \times 10^{-3} \text{ eV}^2$; $\sin^2 2\theta_{23} = 1$

ICARUS
4 years

Cuts: Fiducial, $E_e > 1 \text{ GeV}$, $E_{vis} < 20 \text{ GeV}$

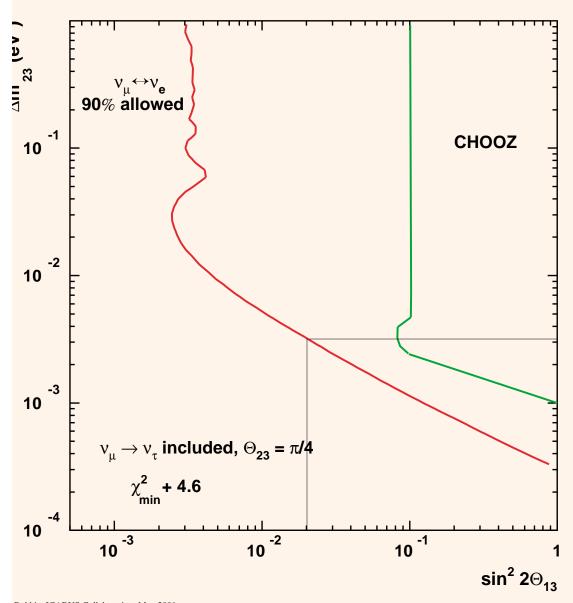
$$\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2, \, \theta_{23} = 45^o$$

θ_{13}	$\sin^2 2\theta_{13}$	ν_e CC	$\nu_{\mu} \rightarrow \nu_{\tau}$	$\nu_{\mu} \rightarrow \nu_{e}$	Total	Statistica
(degrees)			$\tau \to e$	·		significan
9	0.095	79	74	84	237	6.8σ
8	0.076	79	75	67	221	5.4σ
7	0.058	79	76	51	206	4.1σ
5	0.030	79	77	26	182	2.1σ
3	0.011	79	77	10	166	0.8σ


 $P(\nu_{\mu} \to \nu_{\tau}) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \Delta^2_{32}$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \Delta^{2}$$

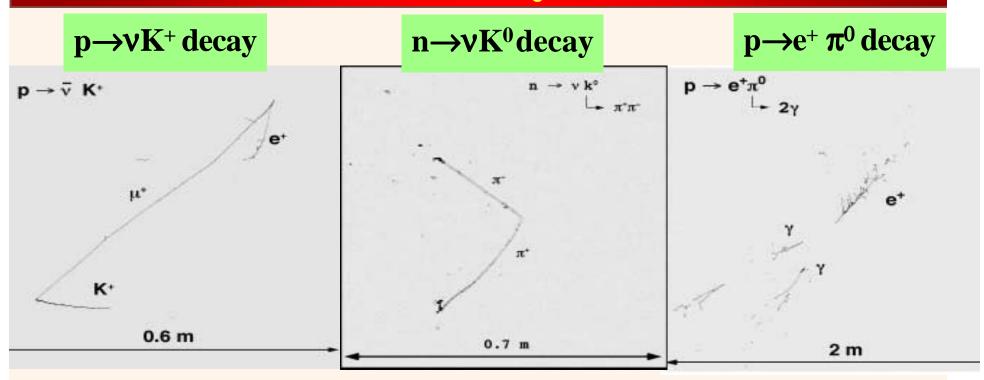
$\Delta m_{32}^2 = 3.5 \times 10^{-3} \text{ eV}^2$; $\sin^2 2\theta_{23} = 1$; $\sin^2 2\theta_{13} = 0.05$


Total visible energy

Transverse missing P_T

Rubbia, ICARUS Collaboration, May 2001

Sensitivity to θ_{13} in three family-mixing



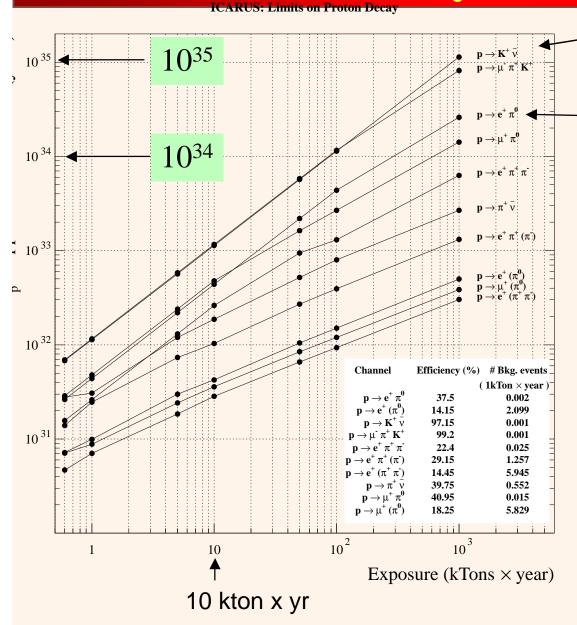
4 years @ CNGS

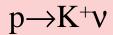
- Estimated sensitivity
 to ν_μ →ν_e oscillations
 <u>in presence of ν_μ →ν_τ</u>
 (three family mixing)
- Factor 5 improvement on $\sin^2 2\theta_{13}$ at $\Delta m^2 = 3x10^{-3} \text{ eV}^2$
- Almost two-orders of magnitude improvement over existing limit at high Δm²

Rubbia, ICARUS Collaboration, May 2001

Nucleon decay searches

Thanks to excellent tracking and particle *id* capabilities


LAr unique tool for


Extremely efficient background rejection

High detection efficiency

Bias-free, fully exclusive channel searches!

Sensitivity vs exposure

$$p \rightarrow e^+ \pi^0$$

Extremely good exclusive signal signatures

⇒ Excellent background rejection

Discovery with a single event!

Nuclear effects in signal: fully embedded in FLUKA nuclear model

The oscillation physics program at the NF

$\mu^-\!\to\!\!e^-\,\overline{\nu}_e\nu_\mu$

 $v_{\mu} \rightarrow v_{e}$ appearance

 v_{μ} disappearance

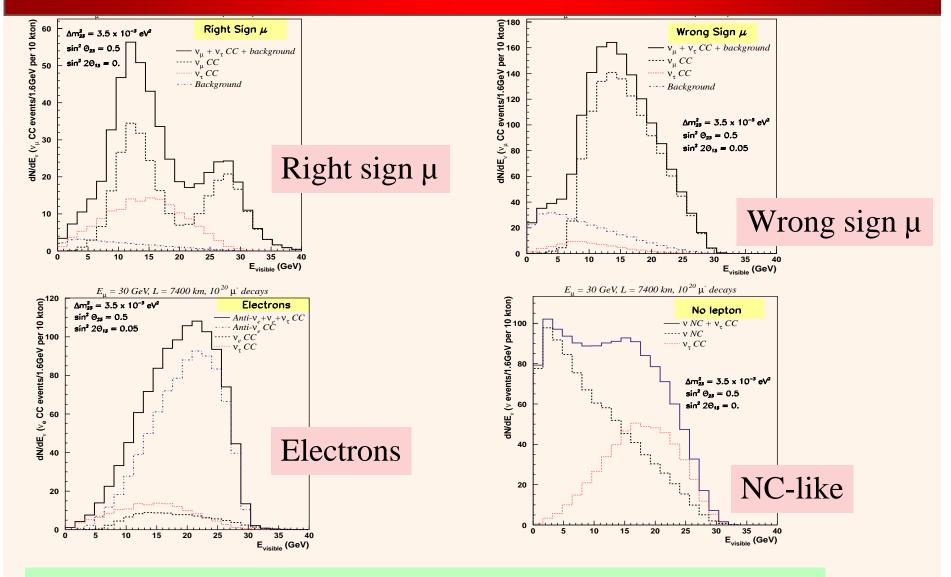
 $v_u \rightarrow v_{\tau}$ appearance

disappearance

appearance

appearance

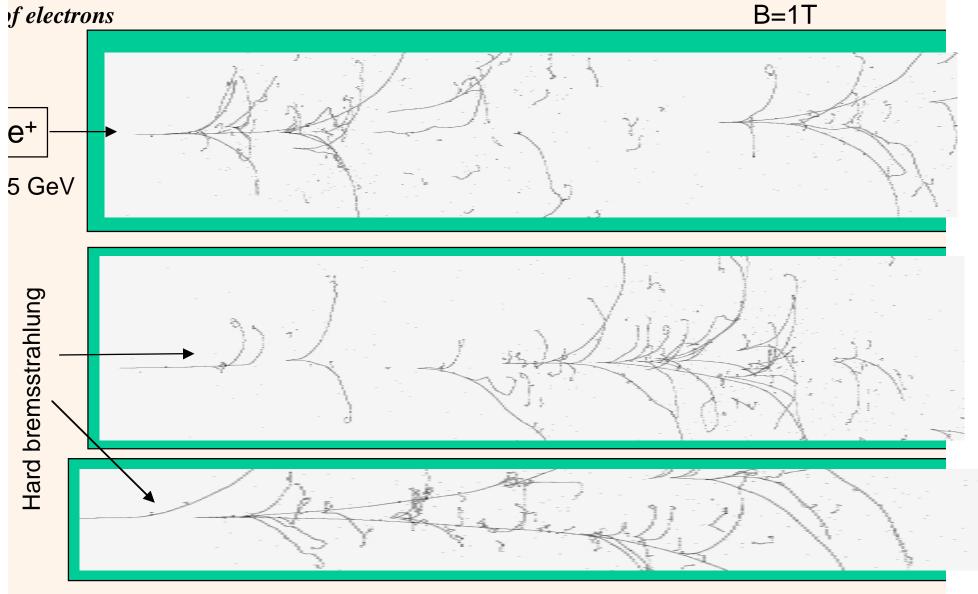
Ideal detector should be able to measure 12 different processes as a function of L and E_v



$$\begin{cases} v_{\ell}N \to \ell^{-} + hadrons \\ \overline{v}_{\ell}N \to \ell^{+} + hadrons \end{cases} \begin{cases} v_{\ell}N \to v_{\ell} + hadrons \\ \overline{v}_{\ell}N \to \overline{v}_{\ell} + hadrons \end{cases}$$

Plus their charge conjugates with $\mu^{\scriptscriptstyle +}$ beam

- 1. Particle ID: charged lepton tags incoming neutrino flavor
- 2. Charge ID: sign of lepton charge tags helicity of incoming neutrino
- 3. Energy resolution: Reconstructed event energy is $E_v = E_l + E_{had}$
- 4. Various baselines L could help for detector systematics


NF event classes with ICARUS

Combining all classes ⇒ (over-constrained) sensitivity to all oscillations!

A magnetized ICARUS

The presence of a magnetic field surrounding the LAr should allow to even determine the charge R=1T

Rubbia, ICARUS Collaboration, May 2001

Conclusion

- ICARUS T600 experiment will yield information on solar, atmospheric neutrinos and maybe supernova neutrinos.
- Thanks to its superior detection technique, it will allow the study of atmospheric neutrino interactions with high quality and resolution, and also in the energy range below 400 MeV.
- We expect to transport the ICARUS T600 detector into the LNGS tunnel after successful tests in Pavia.
- A strategy to reach the multikton ICARUS in the LNGS tunnel in the most efficient and rapid way is under study. This mass will be required for the first CERN long-baseline beam (CNGS), for sensitive proton decay searches and for possible future neutrino factories.
- The ICARUS technology, when scaled to 10's kton masses, holds the potential of a physics of incomparable quality.
- A magnetized ICARUS is the only detector that could yield the electron charge.